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SOME GAMMA FUNCTION INEQUALITIES 

HORST ALZER 

ABSTRACT. A class of completely monotonic functions are presented involving 
the gamma function as well as the derivative of the psi function. As a con- 
sequence, new upper and lower bounds for the ratio F(x + 1)/F(x + s) are 
obtained and compared with related bounds given in part by J. D. Keckic and 
P. M. Vasic. Our results are further applied to obtain functions which are 
Laplace transforms of infinitely divisible probability measures. 

1. INTRODUCTION 

In 1959 W. Gautschi [8] presented the following remarkable inequalities for 
the ratio J(n + l)/17(n + s): 

(1.1) nl-S< l(n + ) < exp[(1 - s)yI(n + 1)], 0 < s < 1, n = 1, 2,... 
IF(n +s) 

where v/ = I/FI denotes the logarithmic derivative of the gamma function. 
The inequalities (1.1) have found great interest, and several intriguing papers 
were subsequently published, for instance, by T. Erber [5], J. D. Keckic and 
P. M. Vasic [10], A. Laforgia [12], and S. Zimering [17], providing new bounds 
for 17(n + 1)/1(n + s) . 

The following sharpening of (1.1) was proved by D. Kershaw [1 1] in 1983: 

(x + )-S < -( )o<5<1nX>o (1.2) 
2 F(x+ S) 

and three years later, J. Bustoz and M. E. H. Ismail [3] established a remarkable 
more general result. They proved that the two functions 

f, (x) = 
l(x + 1) ep(-) (x+ 2 )] O< s<l, 

and 
1F(x + 1) , S<1 
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are strictly completely monotonic on (O, oc) . A function f is said to be strictly 
completely monotonic on an interval I c R if (-l)nf(n)(X) > 0 for all x E I 
and n = O, 1, 2, .... If (-1)nf(n)(x) > O for all x EI andn = O, 1, 2, .... 
then f is called completely monotonic on I. Since 

lim fi (x) = lim f2(x) = 1, 
X-o00 Xoo00 

inequalities (1.2) are immediate consequences of the fact that fA and f2 are 
strictly decreasing on (0, oo) . 

Completely monotonic functions play a dominant role in areas such as nu- 
merical analysis [16], probability theory [6], and physics [4]. An interesting 
exposition of the main results can be found in [15, Chapter IV]. Because of 
"the importance of completely monotonic functions ... it may be of interest to 
add to the available list of such functions" [9, p. 1]. Hence, in the next section 
we introduce a new class of strictly completely monotonic functions and derive 
new upper and lower bounds for F(x + 1)/F(x + s) . This is the main purpose 
of this paper. 

Closely related bounds for J(x + 1 )/J(x + s) were discovered by Keckic 
and Vasi. In ?3 we refine one of their inequalities and compare these bounds 
for J(x + 1 )/J(x + s) with the ones deduced in ?2. Finally, as an application, 
we present functions in ?4 which are Laplace transforms of infinitely divisible 
probability measures. 

2. THE MAIN RESULTS 

The proof of Theorem 1 is based on the following easily established 

Lemma. If h' is strictly completely monotonic on (0, oc), then exp(-h) is also 
strictly completely monotonic on (0, oc). 

An extended version of the lemma can be found in [1, p. 83; 6, p. 441]. 

Theorem 1. The function 

i ~' fa(X s = ]F(X +s) (X +I)x+1/2 
5 1(x + 1) (X + S)x+s- 1/2 

x exp {s - I+ 1I2 ['(x + I + a) - V'(x + s + a)]} (a > 0) 

is for every s E (0, 1) strictly completely monotonic on (0, oo) if and only if 
a > 1/2. Furthermore, the function 

x 4 I, lfO(x, s) (B> O) 

is for every s E (0, 1) strictly completely monotonic on (0, oo) if and only if 
,B =0. 

Proof. First we show that the functions 

hl(x) = logfa(x, s) (a > 1/2) and h2(x) = logfo(x, s) 

satisfy 
(-1 (-h (x)) (n) > 0 and (-I )n(h'(x))(n) > 0 

for x > 0 and n = 0, 1,2 .I By the above lemma it follows that x -4 

fa(x, s) (a > 1/2) and x ~-4 l/fo(x, s) are strictly completely monotonic on 
(0, oo). 
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A simple calculation reveals 

-h'(x) = yI(x+ 1)- yI(x+s) -ologx++ [ l x+s] 

- H[Y/ (x+ 1 +a)- yf"(x+s+a)]. 

Because of the integral representations 
00 1 

e-at dt -, a > 0, 
a 

j(e-at - e-bt = log (-), a > 0, b > 0 (see [7, p. 643]), 

0?? e-t _ e- at 
yi(a) = -Y+j -e-t dt, a > 0 (see [13, p. 16]), 

and 
{?? t2 e at 

v"(a) = - -teat dt a > 0, 

we obtain 

-h' (x) = j [e-t(x+s) - e-t(x+l)]pc (t) dt 

with 
12 - t2 -0 

Po, 12(l-e-t);2 t 

This implies 

(2.1) (-)n (-h 1(x))(n - j [e-t(x+s) e-t(x+ 1) ]tnp (t) dt. 
l~~~ 

We now prove: p,(t) > 0 for t > 0 and a > 1/2. Since a I-4 p,(t) is 
increasing, and since 2k > (k + l)(k + 2)/3 for k = 3, 4, ..., we obtain 

P.R(t > P 1/2(t 

1 E (k +l )(k+2) -k t > 0 

and we conclude that the integrand in (2.1) is positive for t > 0. This leads to 

(-l)n(-h' (x))(n) > Ofor x > O and n = 0, 1, 2. 

Now we prove the second part of the theorem. We have 

h' (x) = y(x + 1 ) + qv(x + s) - 109 x + + 2 x+s 

+ I2 [y/"(x + 1) - V/"(x + s)] 

and using the integral representations listed above, we obtain 

h' (x) = j [e-t(x+s) - e-t(x+l)]q(t) dt 
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with 
1 1 12-t2 

#( =2 t 12(l-e-t) 

Hence, 

(2.2) (h [e-t(x+s) - e-t(x+l)]tnq(t) dt. 

It remains to show that q(t) > 0 for t > 0, or 

Q(t)= et(t3- 6t+ 12) - 6(t+2) > 0 for t > 0. 

Since Q(O) = Q'(0) = 0 and Q"(t) = ett2(t+ 6) > 0 for t > 0, we get from 
(2.2) 

(-2)n(h (x))(n) > O for x > O and n = 0,1, 2,. 

Let fi > 0; we suppose that l/ffl is strictly completely monotonic on (0, oc). 
Because of 

lim (x +a)b-a , a>O, b>0 (see [13, p. 12]) x--0 oo (x + b) 

and limx, yV'(x) = 0, we obtain 

Xlim l/f (x, s) = 1. 

By assumption, 1 /f8 is strictly decreasing; hence we have f, (x, s) < 1, or 

(x + l)x+1/2 exp {s 1 + 1 [v'(x + 1 +)- v(x + s + )} 
(2.3) 17xl~)+l2 (2.3) 

~~< IF(x + I ) (x + S) x+s- 1/2 

for all s E (0, 1) and x > 0. If we let s tend to O and then let x tend to 
0, inequality (2.3) reduces to exp(-1 - fl -2) < 0. We assume that fX (with 
a > 0) is strictly completely monotonic on (0, oo). This implies 

(2.4) Fx(s) > FX(1) for O < s < 1 and x > O, 

with 

Fx(s)=logJ7(x+s)- (x+s-)Ilog(x+s)+s - 1V'(x+s+a). 

From (2.4) we conclude 

5 Fx (s) = y/(x + 1) - log(x + 1) + _ 1 "(x+I+a) 
(2.5) as s=1 2(x +l) 12 

<0 forx>0. 

Setting 

g(a) e at [7-1 + -+2 dt, a >0, 

we obtain (see [7, p. 824]) 

g(a) = I(a) - log(a) + y > -2a2 
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and 

-ql"(b) = + b-g"(b), b > O. 

Thus, we get from (2.5) 

0 > (a + a)3[12g(a) - yi"(a + a)] 

(a+a)3 +a+a + 1-(a+a)3g (a+a) 

3a2 a3 
= 1-2a) - 3 -?2-(a + a)3g"l(a + a). a a2 

Since limx_ ,x3g"(x) = 0 (see [7, p. 824]), the last inequality implies a > 
1/2. This completes the proof of Theorem 1. a 

The functions f, (a > 1/2) and 1 /fo are strictly decreasing and both tend 
to 1 as x tends to oc . This leads to the following bounds for JT(x + 1)/JT(x +s) . 

Corollary 2. The inequalities 

(X + I)x+1I2 exp {s - + [/'(x + I + )-v'(x + s +)]} 

(2.6) J(x+ ) <(x + )+/2 exp {s - I + 1[V/ (x + 
JF(x+ s) (X +S)X+S /ex 1lHy,(+2a 

-q'(x +s + a)]} 

(O <fi < a) are valid for all s E (0, 1) and x > 0 if and only if fi = 0 and 
a> 1/2. 

Remark. Since a- I,'(x+ I +a) - '(x +s +a) (s E (0, 1), x > 0) is strictly 
increasing on (0, o0), the upper bound for J(x + 1 )/J(x + s) is best possible 
if a = 1/2. 

In the Introduction we mentioned that several authors have studied inequal- 
ities for the ratio J(x + 1)/J(x + s). This is in particular true for the special 
case s = 1/2. We refer to the paper of D. V. Slavic [14], which contains a 
summary of interesting inequalities for J(x + 1)/J(x + 1/2). An application 
of (2.6) with s = 1/2 yields: 

Corollary 3. If 

3 a [1+1(2F2((n + 1)/2) n I) 
2 ~~~~(n+1J)n) 

then 

2 1] 
(2.7) an < (-l) ' [ - Z(-l) k2] < an+1 n 21,2. 

k=i J 

Proof. A direct computation reveals that the left-hand inequality of (2.7) holds 
for n = 1 . The other cases follow from (2.6) (with s = 1/2, a = 1/2, fi = 0) 
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and the formula 

(_l)k (n + k) 4 2 ~~~~~~~~~~~k=i1 

=(-1l)n+ 1r [ _12 (-1l)k+ 1 k -2] 

We note that limn,co (2/n) 1/2]((n + 1)/2)/J(n/2) = 1 implies limn,o an = 
0. 

3. THE INEQUALITIES OF KECKIC AND VASIC 

In 1971, J. D. Keckic and P. M. Vasic [10] published the double inequality 

(3.1) bb-l a-b <17(b) < bb/2 ea-b, b>a>1. 
aal 17(a) 

If we denote by 

1 /bb\ 1/(b-a) 
I(a b) = (J7) , a>O, b>O, a$Ab, 

the so-called identric mean, then inequalities (3.1) yield the following bounds 
for the (b - a)th power of I(a, b): 

(3.2) () < I(a b)b-a = < ( b>a> 1' 

The identric mean has been investigated intensively in recent years and many 
remarkable inequalities for I(a, b) have been published by many authors (see 
[2, Chapter VI] and the references therein). However, we could not locate any 
other inequalities providing a relationship between the identric mean and the 
gamma function. 

It is tempting to look for a refinement of (3.2). A natural question to ask is: 
What are the greatest number r and the smallest number s such that 

) (b) < I(a, b)b-a < (-)S 1(b) 

holds for all real numbers b > a > 1? We prove that r = 1/2 and s = 

y = 0.5772... are the best possible constants. In particular, we provide a 
sharpening of the left-hand side of (3.1). 

Theorem 4. The inequalities 

(b\r 17(b) (b" s 17(b) (3.3) 1(a) < I(a, b)b-a < (a- 1(a) 

are validfor all real numbers b > a > 1 if and only if r < 1/2 and s > y. 
Proof. We assume that (3.3) holds for all b > a > 1 . Setting a = 1 , we obtain 

(3.4) r < u(b) < s 

for b > 1, with 

u(b) = (1 - b + blog(b) - log17(b))/log(b). 
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Since limbO, u(b) = 1/2 and limb 1 u(b) = y, we conclude from (3.4) that 
r < 1/2 and s > y. It remains to show that the right-hand inequality of (3.3) 
with s = y is valid for all b > a > 1 . We define for b > 1 

v(b) = y log(b) + log JT(b) - b log(b) + b. 

Differentiation yields 

bv'(b) = y + b[yi(b) - log(b)]. 

Putting w(b) = bv'(b), we obtain 

w'(b) = v(b) + by'(b) - log(b) - 1. 

Using the formula 
1 roo 

yI(b) = log(b) - - -j (t)e-bt dt 

with 6(t) = 1/(et - 1) - t + 4 (see [7, p. 824]), we have 

w'(b) = j (5(t)(bt - 1)e-bt dt. 

Because of 

(t sinh(t/2))26'(t) = (sinh(t/2))2 - (t/2)2 > 0 for t > O, 

we conclude that a is strictly increasing on (0, oo)'. Setting A(t) = (bt- 1)e-bt, 
we get 

I/b fo 

W'(b)= (5(t)A(t)dt+ (5(t)A(t)dt 
0o Jil/b 

() f t/b dt+ () j A(t)dt 

a ( () (bt - I)e-bt dt = 0. 

This implies w (b) > w (1) = 0 for b > 1. Thus, v is strictly increasing 
on [1, oc), and we obtain v(b) > v(a), which is equivalent to the second 
inequality of (3.3) with s = y. Ol 

If weset b=x+1 and a=x+s,then(3.3)with r= 1/2 and s=y yields 
the following inequalities, closely related to (2.6), 

(x + l)X+i-Y es-i < 1(x + 1) < (X + 1)x+1/2 s-I 

(x + S)x+s-Y 17(x + s) (x + s)x+s- l12e 

which are valid for all real numbers x and s satisfying s < 1 and x + s> 1. 
We note that (2.6) and (3.5) hold in different domains, so that both double 
inequalities might be of interest. 

In what follows we compare the bounds for F(x + 1 )/F(x + s) given in (2.6) 
and (3.5). Since V/' is strictly decreasing on (O, oo), we obtain 

'(x +3) - V(x +s + I) <O0 for x >OandO0< s< 1 

which implies that the upper bound in (2.6) is an improvement over the upper 
bound in (3.5) for all x > 0 and s E (0, 1) . In particular, we have shown that 
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the right-hand inequality of (3.5) is valid in a larger domain than the sharper 
right-hand inequality of (2.6). 

The situation with regard to the lower bound is different. An investigation 
reveals that in M = {(s, x) E R210 < s < 1, x+s > 1} (the set where the left- 
hand inequalities of (2.6) and (3.5) hold) neither lower bound is best overall. 
First we prove that for every s E (0, 1) there exists a number xo(s) such that 
for all x > xo(s) the lower bound in (2.6) is better than the one in (3.5). This 
is equivalent to 

(3.6) 12 2 - Y log x + 1 
<yV'(x + 1) - yV"(x + s). 

Because of 

+22 <y(x)< +22 +163 x > 0 (see [7, p. 823]), 

and 

log x+ 1> 
1 

s, x>O, O<s< 1, 

we obtain 

y'(x + 1) - y'(x + s) - 12 ( - y log x + 

(1-s)[12(y- 1)(x+s)- 1] 1 1 1 
(x + l)(x + s) 2(x + 1)2 2(x+ S)2 6(x+ S)3X 

This implies 

lim x 2 [t'(x + 1) - ql'(x + s) - 12 (2 - Y) log x+s]=? 

and hence 

tV (X + 1 ) - ql'(x + s) > 12 (2 - Y) log x + sfor x > xo(s). 2 ~x + 1 

Next we show that there exist (s, x) E M such that the opposite inequality of 
(3.6) holds. Since 

lim yi'(X +1) -yi'(l) = y,"(l) = -2.404 ... 
x--o log(x + 1)- log(l) 

< - 0.926 ..= 12 (2 - y) 

we conclude that there exists a number q e (0, 1) such that 
) x + 1 12(2- y)log >i'(x+1)-"/'(x+s) 

is valid for all x and s with x + s = 1 and 0 < x < q. 

4. INFINITELY DIVISIBLE PROBABILITY MEASURES 

In this section we present an application of Theorem 1 to probability theory. 
We recall that a probability measure duX is infinitely divisible if for every natural 
number n there exists a probability measure du, such that 

d,u = du, * du* * duAn (n times), 

where * denotes convolution. 
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An interesting connection between infinitely divisible probability measures 
and completely monotonic functions is given by the following proposition: 

A probability measure di supported on a subset of [0, oc) is infinitely divis- 
ible if and only if 

Je-xt du(t) = e-h(x) x >0, 
0 

where h has a completely monotonic derivative on (0, oo) and h(0) = 0. (See 
[6, p. 450].) 

This theorem, and the results from ?2, lead to 

Theorem 5. Let e > 0 and s E (0, 1). Then thefunctions 

; | 4 fa(x + 8, WMfOE, s) (a > 1/2) 

and 
X 4fo(6, s)/fo(x +c6, s) 

are Laplace transforms of infinitely divisible probability measures. 

Related results can be found in [3, 9]. 
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